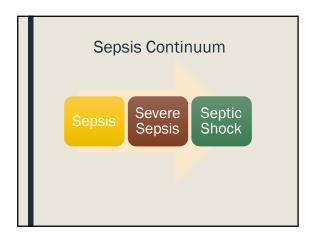


DISCLOSURE

Dr. Long has no financial interests/arrangements to disclose

Objectives


- Recognize early warning signs and symptoms of pediatric sepsis
- Initiate goal-directed resuscitation and management of the septic patient
- Understand the pathophysiology of sepsis
- Identify need for institutional level sepsis bundle

Definition of Shock

- Shock is a syndrome that is characterized by inadequate oxygen delivery and/or extraction to meet metabolic demands of vital organs and tissues
- If untreated, can lead to metabolic acidosis, organ dysfunction, and death

iype.	pes of Shock					
Shock type	Examples	HR	BP	со	Cap Refill	SVR
Hypovolemic	Hemorrhage Dehydration	t	÷	Ļ	Delayed	High
Cardiogenic	Myocarditis Dysrhythmia	1	÷	ŧ	Delayed	High
Distributive	Sepsis Anaphylaxis	1	- 4	↓ or †	Flash or delayed	Low or High
Neurogenic	Spinal cord injury	ţ	÷	÷	Flash or normal	Low
Obstructive	Tamponade Pneumothorax	t	4	ţ	Delayed	High
Distributive	Poisoning Sever anemia	1	Normal or †	1	Normal	Low o

Severe Sepsis

- Severe sepsis sepsis + 1 of following
- Cardiovascular organ dysfunction
- _
- ARDS defined as Pa_{0_2} /FiO₂ ratio \leq 300, bilateral infiltrates on CXR, no evidence of L heart failure

Septic shock and MODS

- Septic shock sepsis + cardiovascular organ dysfunction
- Multiple organ dysfunction syndrome (MODS)
- Presence of altered organ function, so that homeostasis cannot be maintained without medical management

Organ dysfunction

Cardiovascular

- Persistent hypotension despite 60 ml/kg
- Need for vasoactive medication
- Signs of impaired perfusion

Organ dysfunction (cont.)

Respiratory

- PaCO2 > 65, or 20 over baseline PaCO2
- Proven need for > 50% FiO2 to maintain saturation > 92%
- Need for nonelective invasive or noninvasive mechanical ventilation

Organ dysfunction (more)

Neurologic

- GCS \leq 11
- Acute change in MS, with decrease in GCS \geq 3 points baseline

Pediatric Sepsis

- > 72,000 cases yearly in the United States
- 10-20% Mortality in the US
- Significant Morbidity

The Future....

- Biomarkers to identify patients with serious illness
- Genetic markers to identify immunological profile
- 10-20 years in the future

The Now....

Recognition Bundle

- Screen patient using institution sepsis trigger tool
- Clinician assessment within 15 min for positive screen
- Initiate Resuscitation Bundle within 15 minutes for those id with trigger tool and clinically confirmed

Resuscitation Bundle

- Attain IV/IO within 5 minutes
- Appropriate fluid resuscitation within 30 minutes
- Initialization broad-spectrum antibiotics within 60 minutes
- Inotrope for fluid-refractory shock within 60 minutes

Stabilization Bundle

- Multimodal monitoring to optimize fluid, hormonal and cardiovascular responses
- Confirm administration of appropriate antibiotics and source control

Performance Bundle

- Measure adherence to Trigger, Resuscitation and Stabilization Bundles
- Perform root cause analysis to id barriers to adherence
- Provide action plan to address and eliminate barriers

Clinical presentation

- Early recognition is important!
- Physical exam focused on tissue perfusion
- Hypotension is a <u>LATE</u> and <u>PREMORBID</u> sign

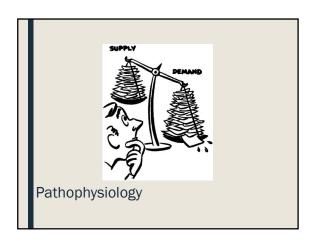
Identifying Serious Illness

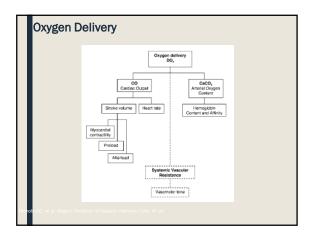
- Capillary refill > 2 sec, mottling and pulse quality
- Heart rate > 90th percentile for age
- Hypotension is a late finding**
- Mental Status
- Classic physical exam findings

Clini	cal pres	entation	
Organ system	↓Perfusion	↓↓ Perfusion	↓↓↓Perfusion
CNS		Restless, apathetic, anxious	Agitated/confused, stuporous coma
Respiration		†Ventilation	↑↑Ventilation
Metabolism		Compensated metabolic acidemia	Uncompensated metabolic academia
Gut		↓Motility	lleus
Kidney	↓Urine volume, †Sp grav	Oliguria (<0.5 ml/kg/h)	Oliguria / anuria
Skin	Delayed cap refill	Cool extremities	Mottled, cyanotic, cold extremities
CVS	↑HR	↑↑HR, ↓peripheral pulses	↓BP, central pulses only

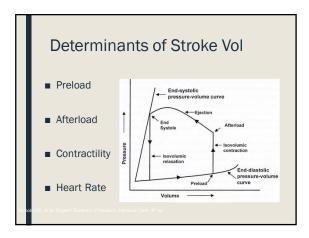
Vitals are Vital

- Patients with poor outcomes within 7 days
- 71% Unexplained tachycardia
- 85% Abnormal vital signs upon discharge


Age Group	Respiratory Rate	Heart Rate	Systolic Blood Pressure	Diastolic Blood Pressure	Weight in Kilos	Consid Higher Acuity w/o Presen of Feve
Newborn	30-50	120-160	50-70	30-60	2-3	>180 HF
Infant (1-12 mos)	20-30	80-140	70-100	53-66	4-10	>180 HF
Toddler (1-3 yrs)	20-30	80-130	80-110	53-66	10-14	>140 HR
Preschooler (3-5 yrs)	20-30	80-120	80-110	55-69	14-18	>140 HR
School Age (6-12 yrs)	20-30	70-110	80-120	57-71	20-42	>130 HR
Adolescent (13+ yrs)	12-20	55-105	110-120	66-80	> 50	>110 HR


High Risk Pediatric Populations

- Malignancy
- Asplenia including sickle cell disease
- Bone marrow transplant
- Solid organ transplant
- Central line
- Severe MR/CP
- Immunodeficient, immunocompromised or immunosuppressed


Something is Not Right

- Gut feeling
- Based on clinical assessment
- Parental level of concern
- Experienced physicians less common

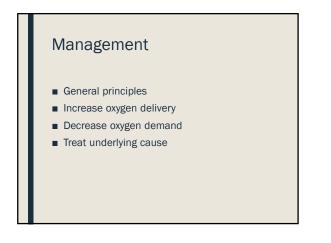
Lack of oxygen

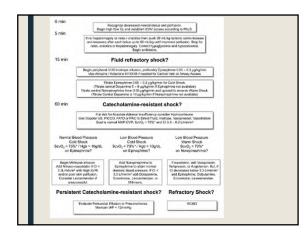
- In aerobic metabolism, ~34 moles of ATP generated per 1 mole of glucose
- With lack of oxygen, switch to anaerobic metabolism
- Pyruvate acid is converted to lactic acid, instead of going through Krebs cycle, only generate 2 moles of ATP
- Have lack of ATP and also metabolic acidosis

Stages of Shock

- Compensated
- Normal blood pressure
- Tissue perfusion preserved
- Uncompensated
- Microvascular perfusion becomes marginal
- Organ and cellular function deteriorate
- Hypotension develops
- Irreversible
- Organ and tissues injury that is unresponsive to conventional therapy and leads to death

Early "Warm" Septic Shock


- Hyperdynamic state
- Clinical signs
- Warm extremities with bounding pulses
- Widened pulse pressure, increased cardiac output and mixed venous saturation, decreased SVR
- Biochemical evidence
- Hypocarbia, elevated lactate, hyperglycemia


Late "Cold" Septic Shock

- Uncompensated with drop in cardiac output
- Clinical signs
- Cold/clammy skin, rapid, thread pulses, shallow respirations
- Physiologic parameters
- SVR, oliguria, myocardial dysfunction, capillary leak

Late "Cold" Septic Shock (cont.)

- Biochemical abnormalities
- Metabolic acidosis, hypoxia, coagulopathy, hypoglycemia
- Rapidly progress to MOSF or death if untreated
- MOSF: Coma, ARDS, CHF, renal failure, ileus, GI hemorrhage, DIC
- More organ systems involved = worse prognosis

General Principles

- IV, Oxygen, Monitor
- <u>A</u>irway intubate if unable to maintain
- <u>B</u>reathing 100% oxygen to start
- Airway obstruction and breathing abnormalities can cause shock
- <u>C</u>irculation rapid IV access, frequent VS reassessment

Initial therapeutic endpoints

■ CR ≤ 2 sec

- BP normal for age
- Normal pulses, with no differential between peripheral and central pulses
- Warm extremities
- Normal mental status

Increase oxygen delivery

- Remember $DO_2 = CaO_2 \times CO$
- or DO₂ = [(1.34 x Hgb x Sat) + (0.003 x PaO₂)] x SV x HR
- Increase carrying capacity by increasing Hgb and saturation
- Stroke volume determined by preload, afterload, and contractility

Volume resuscitation

- Early volume resuscitation is important!
- Obtain early IV access
- The best access is short and wide!
- Pouiselle's law

$$F = \frac{\pi pr^4}{8\mu l}$$

 Large bore PIV, IOs, and cordis are better than a thin, long central line

Importance of Early Resuscitation Carcillo, JAMA 1991

- Retrospective review of 34 pediatric patients with culture positive septic shock from 1982-89.
- Three groups
- 1 20 ml/kg in 1st hour
- 2 20-40 ml/kg in 1st hour
- 3 greater than 40 ml/kg in 1^{st} hour
- No difference in ARDS between groups

Volume resuscitation

- Optimize preload with NS or LR (crystalloid)
- 10-20 ml/kg aliquots
- Hand-push at bedside
- After 40-60 ml/kg, reassess and consider
- Ongoing losses, adrenal causes, intestinal tissue ischemia, obstructive shock
- Further fluid therapy can be guided by response, labs, CVP measurements, CXR

Blood products Plasma therapies

- If SvO₂ < 70% can target Hgb > 10
- After stabilization and recovery of shock, target Hgb > 7
- Transfuse platelets if:
- $\leq 10k$
- $\leq 20k$ and significant risk of bleeding
- $\leq 50k$ and active bleeding
- Use plasma therapies for coagulopathic dz

Vasoactive medications

- Used when there is cardiogenic or distributive component of shock
- Failure to improve perfusion despite adequate oxygenation, ventilation, heart rate, and volume expansion

Adrenergic agonists

- Dopamine D1, α1, β1
- Epinephrine $\alpha 1$, $\beta 1$, $\beta 2$
- More affect on HR and contractility
- Norepinephrine $\alpha 1 >>> \beta 1$
- Mostly vasoconstriction, increased SVR
- Dobutamine β1
- Increases contractility, HR
- May decrease SVR

Corticosteroids

- Give Hydrocortisone if:
- Fluid refractory
- Catecholamine resistant shock
- Suspected or proven absolute adrenal insufficiency

Decrease oxygen demand

- Intubate and use mechanical ventilation
- Will decrease work of breathing
- Use lung protective strategies
- Sedation and paralysis
- Sedation decreases metabolic demands of brain, which will decrease overall oxygen demand

Antibiotics and Source Control

- Administer within 1 hour
- Blood cultures first, but don't delay antibiotics
- Early and aggressive source control
- Nec fascitits, abscess, septic joint

ECMO

 Consider ECMO in refractory septic shock and respiratory failure

References

- Nichols DG, et al. Rogers' Textbook of Pediatric Intensive Care. 4th ed. Philadelphia. Lippincott Williams & Wilkins. 2008.
- Kliegman RM, et al. Nelson Textbook of Pediatrics. 19th ed. Philadelphia. Elsevier Saunders. 2011.
- Goldstein B, Giroir B, Randolph A. International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005;62:2-8
- Dellinger RP, et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock. Crit Care Med 2013;51:580-637.
- Carcillo JA, et al. Role of early fluid resuscitation in pediatric septic shock. JAMA. 1991; 266:1242-5.
- Brierly J, Carcillo JA, Choong K, et al: Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine, Crit Car Med 2009; 37:666-658.
- Klabunde, Richard E. Cardiovascular Physiology Concepts. CV Physiology, 2009. Web. 20 June 2017.